Profundis: Zen and The Art of Motorcycle Maintenance

(What follows is a reposting of a few short essays I wrote for Scott Young’s bookclub in response to the perennial classic ‘Zen and The Art of Motorcycle Maintenance’):

___

Near the end of chapter 3 the narrator makes a number of epistemological and metaphysical claims which confused me for a long time and confuse many people still. In recent years I have resolved them to my satisfaction, and this seems like as good a place as any to elucidate my thoughts.

He writes: “The law of gravity and gravity itself did not exist before Isaac Newton”, then continues “…[w]e believe the disembodied words of Sir Isaac Newton were sitting in the middle of nowhere billions of years before he was born and that magically he discovered these words.”

This nicely demonstrates an incorrect conflation of laws and physical phenomena. Unless you’ve been snorting uncut Postmodernism fresh off the Continent you’re bound to think that gravity existed before Isaac Newton. What he did was distill gravitational observations into formulae by which to describe and predict future observations.

Gravity existed prior to these formulae just like apples existed before anyone named them.

As Alfred Korzybski put it, ‘the map is not the territory’.

Entire planets worth of error can be avoided if you keep this in mind. For example, I’ve seen Gödel’s Incompleteness Theorems cited in defense of the existence of God. The Incompleteness Theorems say, in essence, that formal systems of sufficient power to perform arithmetic or describe the properties of the natural numbers contain enough recursion to ineluctably give rise to paradoxes. There are statements which are true in these systems but which cannot be established by any algorithmic procedure.

Truth, in other words, is bigger than proof.

Put more simply GITs demonstrates that the weirdness associated with a statement like ‘this sentence is false’ is to be found at the heart of mathematics and as a consequence of its deepest nature.

But — crucially! — the limitations of GITs apply only to the formal systems themselves. They tell us nothing about a non-formal system like the universe whose behavior is captured by formal systems we invent. There is a gigantic difference between saying ‘the symbols we use to describe system A have these built-in limitations’ and saying ‘system A itself is subject to those same limitations’.

And I think Phaedrus is making a similar error.

___

In chapter 6 we learn that Phaedrus believed there to be two fundamental ways of viewing the world. The ‘classical’ view tends to think in terms of underlying components, processes, and interactions, whereas the romantic view thinks in terms of intuitions about immediate, surface appearances.

Below is one answer to that, expanded from a comment left earlier which is worth it’s own spot:

Coming at the classical/romantic idea from a completely antithetical direction, Ayn Rand’s Objectivist philosophy champions an aesthetic merger of the two called ‘romantic realism’. I realize that she is one of those thinkers that splits the world into fervent worshippers and rabid detractors, so I’d like to avoid getting into the whole ‘Ayn Rand debate’. It’s my belief that her claims about aesthetics can stand independently from her other philosophical positions.

Objectivism sees art as being essential to the task of concretizing man’s widest abstractions in the form of perceivable, physical objects. Artists look out at the world and choose some subset of what they see to represent in their art. Their artistic choices — and our emotional responses to those artistic choices — are guided either by an explicit philosophy or by an unarticulated ‘sense of life’. Something very deep is implied by the decision to paint a skyscraper or the decision to paint ruins, and something equally deep is implied by which of these two we find aesthetically pleasing.

As beings whose nature is conceptual we require literature, art, and music to reify our ethical and metaphysical convictions — otherwise they would remain mere abstractions with a limited influence on the actual choices we make day-to-day. By owning and repeatedly responding to a work of art we reinforce a system 1 response which harmonizes with our system 2 judgements.

With time, art becomes like a fuel one burns to keep their motor running. One can fight with more vigor when surrounded by books and paintings which remind them of how the world could and ought to be.

And say what you will about the merits of her writing, I personally find the art it inspired to be gorgeous. Sylvia Bokor and Quentin Cordain both paint in the romantic realist style and NASA’s Jet Propulsion labs just released some excellent Art Deco posters from the future which I liked enough to get framed. Nick Gaetano did a series of iconic covers for editions of “Atlas Shrugged”, “For the New Intellectual”, and “Capitalism: The Unknown Ideal”, all of which inspired the cover of my upcoming book on the STEMpunk Project.

It’s a shame that Rand’s own vitriol has prevented more exposure to the view that art has a cognitive justification grounded in man’s needs qua man. Even if you reject everything else in Objectivism her treatment of aesthetics remains fascinating, original, and profound.

___

In chapter 10 the narrator makes several jarring criticisms of the scientific method which, if one hasn’t ever considered them before, could very well cause intellectual vertigo and a sense of nausea.

First, we have this:

“If the purpose of the scientific method is to select from among a multitude of hypotheses, and if the number of hypotheses grows faster than the experimental method can handle, then it is clear that all hypotheses can never be tested. If all hypotheses cannot be tested, then the results of any experiment are inconclusive and the entire scientific method falls short of its goal of establishing proven knowledge.”

Let’s call this the Problem of Underdetermination (PU).

He continues:

“…[W]hat seems to be causing the number of hypotheses to grow in recent decades seems to be nothing other than scientific method itself. The more you look, the more you see.”

Let’s call this the Problem of Hypothesis Proliferation (PHP)

Finally, we are told:

“Through multiplication upon multiplication of facts, information, theories, and hypotheses, it is science itself that is leading mankind from single absolute truths to multiple, indeterminate, relative ones.”

This one we call the Problem of Scientific Learned Helplessness (SLH).

I will address the first two problems here. The third I may answer at some point in the future.

PU is a pretty standard strawman of the scientific method, and it’s surprising to see it crop up in such a significant work. Everyone knows that the purpose of science is not to establish irrefutable proven Truth (with a capital ‘T’), but instead to sift through reams of data and establish one or several hypotheses that can predict future data points. Additional criteria, like Ockham’s Razor, are used to temper the forging of hypotheses with considerations of their computational burden. (I can say more about this if necessary)

The fact that evidence *always* underdetermines hypotheses has been an acknowledged problem for as long as there has been a philosophy of science, and it crops up in algorithms (like EBL, KBIL, and ILP) which have to form their own understanding of a data set.

There isn’t an easy solution here, but there are a few things we can note. First, there are a number of ways we can constrain the space of possible hypotheses. Perhaps the most common is by making assumptions which are valid within the prevailing theoretical framework. We assume, for example, that the color of a scientist’s shoelaces doesn’t affect their observation of light from distant stars.

Do we know this for certain? No. Might we someday uncover evidence of a link between shoelaces and light beams? Sure. But without a reason to see a connection now, we assume there isn’t one, and thereby rule out some regions of hypothesis space.

Moreover, until we get to the point at which a paradigm shift is necessary we usually don’t entertain hypotheses which contradict our broader theories. General Relativity says faster-than-light travel isn’t possible, so any hypothesis which utilize FTL are ruled out a priori. If and when someone dethrones Einstein that may change, but until then we don’t concern ourselves with those regions of hypothesis space either.

Even with all this there might still be a number of possible hypotheses which make sense of a given data set. The solution, then, is to hold all of them as possibly true until more data comes in.

The brilliant Nate Soares has discussed a kind of update to science he calls ‘simplifience’. It’s essentially science with some information theory and Bayesianism thrown in. The idea is that one doesn’t hold beliefs about data, one assigns probabilities to any candidate explanations for a given phenomenon. If there are five viable explanations of, say, the Mpemba Effect, then we try to work out how likely each is on the evidence and modify when possible.

Getting Bayesian statistics to run on a human brain is tough, of course, but far easier with a digital mind. Given current trends it’s possible that software scientists will outnumber meat scientists in the future, so maybe this won’t be as much of a problem.

I believe that Phaedrus makes too much out of the PHP. Yes, it’s true that every discovery raises new questions, but I submit that it *answers* far more, such that the net result is an increase in understanding rather than a decrease.

If we hear a rustling in the bushes, there is a near-infinite set of questions we could ask ourselves: is it a human or an animal? If it’s an animal, is it a predator? If so, is it a bear? A Wolf? An alligator? Is it hungry?

Let’s say we then hear the animal barking like a dog. Okay, this discovery makes us wonder about a few additional things: is this dog hungry? Does it belong to someone nearby? Is it friendly? Does it have all its shots?

Phaedrus sees this and says, ‘See! Science doesn’t settle a damn thing!”

But while our discovery that the animal is a dog generates new queries it simultaneously collapses vast regions of possible queries which we needn’t concern ourselves with.

We don’t have to ask if the animal is a bear; we know it isn’t. We don’t have to ask if it’s an alligator (and what in the world an alligator is doing in the Rocky mountains), because we know that it isn’t. For each of these animals we could ask the same set of questions we ask about the dog: is it hungry, etc.

None of that need concern us now.

So our discovery raised ten questions, and obviated the need to ask literally thousands of others.

We have not, therefore, gotten more confused by gaining information.

___

In Chapter 19 the narrator begins to probe the (in)famous subject/object distinction, postulating that Quality might not only be a kind of bridge between them, but the actual phenomenon giving rise to separate perceptions of self and other in the first place.

But first he must resolve a dilemma. The two horns are: (I) if Quality is objective, then why is it that scientific instruments aren’t able to detect it? (II) if Quality is subjective, then how is it any different from being ‘just what the observer likes’?

After briefly treating (I) and failing to resolve it satisfactorily the narrator turns to (II): ‘if Quality is subjective, isn’t it just what you like?’ If we excise the word ‘just’ we are left with the question, ‘if Quality is subjective, isn’t it what you like?’, which isn’t as sinister.

The assumed problem is that your preferences emerge from a soup of irrational, contradictory impulses which means that they aren’t likely to be much guide to Quality in any useful sense.

This argument breaks down into two related ones, which the narrator dub ‘scientific materialism’ and ‘classic formalism’. They are the claim that ‘what is real is whatever is made of matter and energy and detectable’ and ‘something isn’t understood unless its understood intellectually’, respectively. Scientific materialism is relatively easy to do away with: we can’t detect the concept ‘zero’, and yet it remains objective.

I think it’s possible to formulate a reply to this. ‘Concepts’ are real things, though they don’t exist out-in-the-world the way chairs do. Instead, they are abstractions running on a neural substrate. They have realness in the sense of having a causal impact on the world because, being housed in brains, they change the way agents like humans behave. They might even be measurable, in a way: there may come a time when brain imaging technology is so advanced we can see concepts as activations in neural circuits. (I’m being a little facetious here but I think you see what I’m saying)

Leaving this aside we still have classical formalism, which is harder because it’s more forceful. All it really says is that we should not base our decisions upon our romantic surface impressions but should consider the larger context and the underlying, classical structures involved. This seems sensible enough, but cleaves Quality in two. There is now a surface Quality which appears immediately and a deeper Quality which takes time to understand. People disagree about Quality precisely because they get this wrong. Some people use their surface impressions in their evaluations of Quality and others use deeper ones, and therein lies fodder for argument.

Frankly, I don’t share the narrator’s consternation over this. I’m prepared to say that Quality just is this deeper appreciation; there are not two Qualities, only one, and people basing their Quality judgements on surface understanding are wrong.

But this requires a caveat: there are people with a tremendous amount of talent in a field like music or mathematics for whom surface impressions do seem to count as Quality detection, even though they may have little formal understanding of the classical structures below. We usually call these people ‘prodigies’, and not that much is known about how they function. For most of us, however, the relationship does hold.

With these notes in place the narrator goes on to formulate a position similar to one I’ve arrived at independently: Quality (though I didn’t call it that before) is really a phenomenon occurring at the interface between agent and world. We can illustrate this same principle with a different problematic term: Beauty (with a capital B).

Are some things Beautiful? Yes. Does the term ‘Beautiful’ resist definition? Yes. Is there enough broad agreement to suggest there is something objective underlying the concept? Yes.

How about this: if all sentient beings in the universe were to perish, would Beauty still exist? No. There would still be paint on canvasses, but Beauty presupposes an agent able to perceive the thing of Beauty. It makes no sense to speak of Beauty elsewise.

And I believe Quality is exactly the same.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s